首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   192篇
  免费   14篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   4篇
  2015年   3篇
  2014年   8篇
  2013年   13篇
  2012年   12篇
  2011年   12篇
  2010年   7篇
  2009年   8篇
  2008年   13篇
  2007年   13篇
  2006年   15篇
  2005年   9篇
  2004年   19篇
  2003年   13篇
  2002年   12篇
  2001年   3篇
  2000年   1篇
  1999年   4篇
  1998年   2篇
  1997年   4篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1976年   1篇
  1973年   1篇
排序方式: 共有206条查询结果,搜索用时 31 毫秒
41.
Human dental pulp contains adult stem cells. Our recent study demonstrated the localization of putative dental pulp stem/progenitor cells in the rat developing molar by chasing 5-bromo-2’-deoxyuridine (BrdU)-labeling. However, there are no available data on the localization of putative dental pulp stem/progenitor cells in the mouse molar. This study focuses on the mapping of putative dental pulp stem/progenitor cells in addition to the relationship between cell proliferation and differentiation in the developing molar using BrdU-labeling. Numerous proliferating cells appeared in the tooth germ and the most active cell proliferation in the mesenchymal cells occurred in the prenatal stages, especially on embryonic Day 15 (E15). Cell proliferation in the pulp tissue dramatically decreased in number by postnatal Day 3 (P3) when nestin-positive odontoblasts were arranged in the cusped areas and disappeared after postnatal Week 1 (P1W). Root dental papilla included numerous proliferating cells during P5 to P2W. Three to four intraperitoneal injections of BrdU were given to pregnant ICR mice and revealed slow-cycling long-term label-retaining cells (LRCs) in the mature tissues of postnatal animals. Numerous dense LRCs postnatally decreased in number and reached a plateau after P1W when they mainly resided in the center of the dental pulp, associating with blood vessels. Furthermore, numerous dense LRCs co-expressed mesenchymal stem cell markers such as STRO-1 and CD146. Thus, dense LRCs in mature pulp tissues were believed to be dental pulp stem/progenitor cells harboring in the perivascular niche surrounding the endothelium.  相似文献   
42.
The 3-sulfates of the S-acyl glutathione (GSH) conjugates of five natural bile acids (cholic, chenodeoxycholic, deoxycholic, ursodeoxycholic, and lithocholic) were synthesized as reference standards in order to investigate their possible formation by a rat liver cytosolic fraction. Their structures were confirmed by proton nuclear magnetic resonance, as well as by means of electrospray ionization-linear ion-trap mass spectrometry with negative-ion detection. Upon collision-induced dissociation, structurally informative product ions were observed. Using a triple-stage quadrupole instrument, selected reaction monitoring analyses by monitoring characteristic transition ions allowed the achievement of a highly sensitive and specific assay. This method was used to determine whether the 3-sulfates of the bile acid-GSH conjugates (BA-GSH) were formed when BA-GSH were incubated with a rat liver cytosolic fraction to which 3'-phosphoadenosine 5'-phosphosulfate had been added. The S-acyl linkage was rapidly hydrolyzed to form the unconjugated bile acid. A little sulfation of the GSH conjugates occurred, but greater sulfation at C-3 of the liberated bile acid occurred. Sulfation was proportional to the hydrophobicity of the unconjugated bile acid. Thus GSH conjugates of bile acids as well as their C-3 sulfates if formed in vivo are rapidly hydrolyzed by cytosolic enzymes.  相似文献   
43.
Local and chemical distribution of phlorotannins in brown algae   总被引:4,自引:2,他引:2  
The local and chemical distribution of phlorotannins among the Japanese Laminariaceae, Eisenia bicyclis, Ecklonia cava and Ecklonia kurome, was investigated. As a result of light microscopy observations with vanillin-HCl staining, phlorotannins were found to be accumulated within the vegetative cells of the outer cortical layer of the thalli, regardless of the species, stage of growth or organ. Crude phlorotannins comprised about 3.0% of the algal powder for each of the algae. High-performance liquid chromatography (HPLC) showed that the phlorotannins of E. bicyclis were composed of phloroglucinol (0.9%), phloroglucinol tetramer (4.4%), eckol (7.5%), phlorofucofuroeckol A (21.9%), dieckol (23.4%), and 8,8'-bieckol (24.6%), plus some other unknown phenolic compounds (17.3%). The composition of the phlorotannins differed little among the Laminariaceae, except for a significantly larger amount of the tetramer, MW 478, in E. bicyclis.  相似文献   
44.
The recently described human anion channel Anoctamin (ANO) protein family comprises at least ten members, many of which have been shown to correspond to calcium-activated chloride channels. To date, the only reported human mutations in this family of genes are dominant mutations in ANO5 (TMEM16E, GDD1) in the rare skeletal disorder gnathodiaphyseal dysplasia. We have identified recessive mutations in ANO5 that result in a proximal limb-girdle muscular dystrophy (LGMD2L) in three French Canadian families and in a distal non-dysferlin Miyoshi myopathy (MMD3) in Dutch and Finnish families. These mutations consist of a splice site, one base pair duplication shared by French Canadian and Dutch cases, and two missense mutations. The splice site and the duplication mutations introduce premature-termination codons and consequently trigger nonsense-mediated mRNA decay, suggesting an underlining loss-of-function mechanism. The LGMD2L phenotype is characterized by proximal weakness, with prominent asymmetrical quadriceps femoris and biceps brachii atrophy. The MMD3 phenotype is associated with distal weakness, of calf muscles in particular. With the use of electron microscopy, multifocal sarcolemmal lesions were observed in both phenotypes. The phenotypic heterogeneity associated with ANO5 mutations is reminiscent of that observed with Dysferlin (DYSF) mutations that can cause both LGMD2B and Miyoshi myopathy (MMD1). In one MMD3-affected individual, defective membrane repair was documented on fibroblasts by membrane-resealing ability assays, as observed in dysferlinopathies. Though the function of the ANO5 protein is still unknown, its putative calcium-activated chloride channel function may lead to important insights into the role of deficient skeletal muscle membrane repair in muscular dystrophies.  相似文献   
45.
In mammalian spermiogenesis, sperm mature during epididymal transit to get fertility. The pig sharing many physiological similarities with humans is considered a promising animal model in medicine. We examined the expression profiles of proteins from boar epididymal caput, corpus, and cauda sperm by two-dimensional gel electrophoresis and peptide mass fingerprinting. Our results indicated that protein disulfide isomerase-P5 (PDI-P5) human homolog was down-regulated from the epididymal corpus to cauda sperm, in contrast to the constant expression of protein disulfide isomerase A3 (PDIA3) human homolog. To examine the functions of PDIA3 and PDI-P5, we cloned and sequenced cDNAs of pig PDIA3 and PDI-P5 protein precursors. Each recombinant pig mature PDIA3 and PDI-P5 expressed in Escherichia coli showed thiol-dependent disulfide reductase activities in insulin turbidity assay. Although PDIA3 showed chaperone activity to promote oxidative refolding of reduced denatured lysozyme, PDI-P5 exhibited anti-chaperone activity to inhibit oxidative refolding of lysozyme at an equimolar ratio. SDS-PAGE and Western blotting analysis suggested that disulfide cross-linked and non-productively folded lysozyme was responsible for the anti-chaperone activity of PDI-P5. These results provide a molecular basis and insights into the physiological roles of PDIA3 and PDI-P5 in sperm maturation and fertilization.  相似文献   
46.
The crude phlorotannins from the brown alga Eisenia bicyclis showed inhibitory activity against 10 of 13 kinds of glycosidases present in the viscera of the turban shell Turbo cornutus. Phloroglucinol and its oligomers – eckol (a trimer), phlorofucofuroeckol A (a pentamer), dieckol and 8,8′-bieckol (hexamers), and an unidentified tetramer – were isolated from the crude phlorotannins by column and thin-layer chromatography. Phlorofucofuroeckol A, dieckol and 8,8′-bieckol inhibited α-fucosidase, β-galactosidase and β-mannosidase partially purified from T. cornutus, while phloroglucinol, eckol and the unidentified tetramer were weakly active. Dieckol was a competitive inhibitor of α-fucosidase with an inhibition constant (K i) of 0.12?mM. The amounts of phlorotannins released after the immersion of freshly collected E. bicyclis in seawater or deionized water were estimated by high-performance liquid chromatography. Nearly all the phlorotannins were exuded into the medium following the death of the algae, whereas no phlorotannins were detected in the medium of living algae. These findings indicate that the phlorotannins deter the feeding of marine herbivorous gastropods by inhibiting the glycosidases.  相似文献   
47.
When quiescent rat glioblasts were stimulated by glia maturation factor (GMF), their intrinsic Ca2+-dependent phosphorylation of proteins, especially that of Mr 100 k protein, increased. The phosphorylation of Mr 100 k protein in the homogenate started rising 13 h (S phase) after GMF stimulation and reached the maximal level (8-fold greater than the control) at 26 h. Phosphorylation was also detected in intact cells by the use of [32P]orthophosphate. Calmodulin augmented and W-7 (calmodulin inhibitor) slightly inhibited the phosphorylation, suggesting that Ca2+/calmodulin-dependent protein kinase may partly be involved in phosphorylation of the Mr 100 k protein. Subcellular fractionation experiments revealed that both Mr 100 k protein and its kinase were localized exclusively in the cytosol. We also found marked phosphorylation of Mr 100 k protein in neural tumor cell lines, mouse neuroblastoma (Neuro2a and NAs-1) and glioma (C6 and 354A). Since the peptide maps of 32P-labeled peptides obtained by chemical cleavage from Mr 100 k protein of the cells were identical to those of glioblasts, the Mr 100 k proteins, regardless of cell origin, may be closely related in structure. Growth inhibitors, W-7 (50 μM), puromucin (2 μM), spongoadenosine (50 μM), diphenylhydantoin (0.3 mM), -sialosyl cholesterol (20 μg/ml) and protein kinase inhibitor, K252a (50 nM), lowered the phosphorylation of the Mr 100 k protein in the cell homogenate derived from glioblasts pretreated with the drugs for 24 h.

Mr 100 k protein of glioblasts and C6 cells was immunoprecipitated by anti-elongation factor-2 (EF-2) antiserum indicating an identity or similarity in structure between the protein and EF-2. These findings provide a possibility that cell growth may be brought about through a phosphorylation of Mr 100 k protein as one of the signal transduction processes subsequent to a mitogen stimulation.  相似文献   

48.
Galactosylglycerolipids (GGLs) and chlorophyll are characteristic components of chloroplast in photosynthetic organisms. Although chlorophyll is anchored to the thylakoid membrane by phytol (tetramethylhexadecenol), this isoprenoid alcohol has never been found as a constituent of GGLs. We here described a novel GGL, in which phytol was linked to the glycerol backbone via an ether linkage. This unique GGL was identified as an Alkaline-resistant and Endogalactosylceramidase (EGALC)-sensitive GlycoLipid (AEGL) in the marine green alga, Ulva pertusa. EGALC is an enzyme that is specific to the R-Galα/β1-6Galβ1-structure of galactolipids. The structure of U. pertusa AEGL was determined following its purification to 1-O-phytyl-3-O-Galα1-6Galβ1-sn-glycerol by mass spectrometric and nuclear magnetic resonance analyses. AEGLs were ubiquitously distributed in not only green, but also red and brown marine algae; however, they were rarely detected in terrestrial plants, eukaryotic phytoplankton, or cyanobacteria.  相似文献   
49.
The relationship between sweetness and chemical strucure of3,4-dihydroisocoumarins was studied because of the interestin the structure of phyllodulcin, the only sweet tasting compoundamong the naturally occurring 3,4-dihydroisocoumarins. It wasfound by structural modification of phyllodulcin and the synthesesof various derivatives that ß-(3-hydroxy-4-methoxyphenyl)ethylbenzene (XIII) is the essential part of sweet tasting 3,4-dihydroissocoumarins.Further studies on the structural modification of XIII wereundertaken to make the relationship between structure and sweettaste clearer. The application of the information obtained fromthe structure-sweetness relationship of 3,4-dihydroisocoumarinsto the design of other series of sweet compounds was attempted.The resulting chroman (LXXXVII), isochroman (LXXXVI), flavanone(LXXXIX), and dihydrochalcone (XCV) derivatives are potentlysweet, as was predicted. From these results, it may be concludedthat the relationship between sweetness and structure of 5-hydroxyflavanonesor dihydrochalcones lacking a glycoside moiety is similar tothat of the 3,4-dihydroisocoumarins.  相似文献   
50.
Measurement of steroid levels in saliva has been proposed as a new laboratory tool for characterizing steroid metabolism, but it is not known whether the salivary levels of bile acids can be measured with accuracy and if so, whether such measurements provide information that is of clinical value. We developed and validated a sensitive and specific liquid chromatography–electrospray ionization-tandem mass spectrometric (LC–ESI-MS/MS) method for the quantification of chenodeoxycholic acid (CDCA) and glycochenodeoxycholic acid (GCDCA), representative primary non-amidated and glycine-conjugated bile acids, in whole saliva. We also examined whether the salivary bile acid concentrations were dependent on the saliva flow rate, because this is a very important aspect in a discussion of the utility of salivary diagnostics. Saliva was deproteinized with ethanol and purified using a Strata-X cartridge. Bile acids were converted to their hydrazide derivatives using 2-hydrazinopyridine, and subjected to LC–MS/MS. Quantification was based on selected reaction monitoring using characteristic transitions, and deuterated CDCA and GCDCA were used as internal standards. This method allowed the reproducible and accurate quantification of the salivary bile acids using a 200-μl sample and the limits of quantification for CDCA and GCDCA were 25 and 50 pg/ml, respectively. Using this method, the effect of increased saliva flow rate by gum-chewing on the salivary concentrations of CDCA and GCDCA was determined. The salivary level of GCDCA was significantly decreased by gum-chewing, whereas the concentration of CDCA remained constant. These results indicate that there is a good possibility that saliva may be a clinical tool for non-amidated bile acid testing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号